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Abstract. The spherically symmetric time-dependent SU(2) Yang-Mills equations and 
Yang-Mills-Higgs equations are shown to be non-integrable by using the Weiss, Tabor 
and Carnevale method of Painleke analysis. Reduced equations corresponding to these 
systems are also found to be non-integrable. 

1. Introduction 

Recently the question of integrability of non-Abelian gauge fields has attracted wide 
attention (Nikolaevskii and Schur 1982, 1983, Savvidy 1984, Matinyan et a1 1986, 1988, 
Villarroel 1988). Trajectories of integrable systems are regular and do not show any 
sensitive dependence on initial conditions. But most of the non-linear classical systems 
are non-integrable and show complicated behaviour known as chaos. I t  has been 
shown that chaos can appear in the classical theory of non-Abelian gauge fields also, 
at least under certain approximations. This is an important result deserving further 
study in view of the result obtained by Olsen (1982) that the presence of random fields 
in the vacuum is a necessary and sufficient condition of quark confinement in quantum 
chromodynamics. 

Most studies made so far have confined themselves to the finite-dimensional 
subsystems depending only on a time variable. Classical Yang-Mills theory depending 
only on time ( Y M  classical mechanics) has been shown to be non-integrable and chaotic 
by various techniques (Matinyan et a1 1981, Nikolaevskii and Schur 1982, 1983, Gorski 
1984, Savvidy 1984, Steeb et a1 1986, Furusawa 1987, Villarroel 1988). However, with 
regard to the general 3 + 1 field systems the situation is not fully understood. By the 
PainlevC criterion, SU(2) self-dual Yang-Mills equations have been shown to be 
integrable (Jimbo et a1 1982, Ward 1984). But such analysis has not been carried out 
for more general cases. On the other hand, Matinyan et a1 (1986,1988) have recently 
shown that a spacetime-dependent spherically symmetric Yang-Mills system can 
exhibit dynamical chaos. They employed the Fermi-Pasta-Ulam (1955) method in 
which continuous equations are replaced by a set of discrete equations which are then 
numerically analysed. But it is well known that the discretisation itself can cause 
chaotic behaviour. Also, the continuum limit of a discrete model exhibiting chaos can 
be non-chaotic. 

In this work an attempt will be made to clarify the question of non-integrability 
in the spherically symmetric non-self-dual sector of SU(2) Yang-Mills and Yang-Mills- 
Higgs theory without introducing discretisation. We apply singular point analysis to 
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test the integrability of the PDE as well as of the O D E  obtained by symmetry reduction 
and  by other means. Our results show that these systems are generally non-integrable. 

The partial differential equations corresponding to the SU(2) theory and the O D E  

obtained from them are described in section 2 .  In section 3 we briefly describe the 
WTC algorithm for singular point analysis. The results are also presented in this section. 
Section 4 is a summary of results and conclusions. 

2. Yang-Mills and Yang-Mills-Higgs systems 

The SU(2) Yang-Mills system is described by the Lagrangian 
y =  -'F" F" 

4 +" t L L ,  

where 

F ~ , = a t L A ~ - a , A : : + g ~ , , A ~ A : ,  

p, v = 0, 1 , 2 , 3  a, b, c = 1, 2,3.  

In the spherically symmetric ansatz, 

the equations of motion, D@F+"" = 0 becomes 

r 2 ( K K , , - K , , ) + K ( 1 - K 2 ) = 0 .  

Of the static solutions of ( l ) ,  K = 0 is the Wu-Yang monopole solution, K = -1 is the 
vacuum solution and K = 1 is gauge equivalent to the vacuum one. These static 
solutions are all unstable. All solutions except the trivial one K = +1 are non-self-dual. 
A Lie symmetry analysis for this system including a Higgs field was carried out by 
Babu Joseph and  Baby (1986) and from this we infer that (1) admits a similarity variable, 

p = r / (  t 2  - r')  ( 2 )  

and on substituting (2) in (1) we get the corresponding similarity reduced ODE 

, d'K 
dP 

p - - =  K ( K ' - ~ ) .  (3) 

The singularity analysis of this equation is of significance in view of the conjecture by 
Ablowitz et a1 (1980), that a system of PDE is integrable if the corresponding similarity 
reduced system of ODE possesses the PainlevC property. It is also known that using 
an  independent variable transformation (Arodz 1983) 

t - to 
K=-- 1 

r (4) 

the non-linear partial differential equation (1) can be reduced to a second-order 
non-linear ordinary differential equation, 

d2  K d K  
dK2 dK 

( 2 +  K)K-+2(1+ K )  -+ K ( 1  - K ' )  = o .  

The domain of K is -1 K < W .  
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Another system which we analyse is the SU(2) Yang-Mills-Higgs system with 
Lagrangian density, 

Y= - ; F ; , F ~ ' " + + D , ~ " D ~ ~ ~ ~  - v(4)  
where 

F",, =a,Ay -a,A",ggeah,Ah,A: 

DF4<, = aF40 + geah,A;dc 

The equations of motion are 

D , F @ ~ ~  = - g & a b c ( D P 4 b ) 4 r  D,D"4, = ( m 2 - h d 2 ) 4 , .  
Using the time-dependent 't Hooft-Polyakov ansatz (Mecklenberg and  O'Brien 1978) 

the field equations of the SU(2) gauge theory become 

r2(  K,, - K l l )  = K ( K 2  - 1 + H ' )  

In the Prasad-Sommerfeld (PS)  limit they reduce to 

r'( K,, - K l l )  = K ( K ' -  1 + H ' )  r z (  H, ,  - Hll )  = 2HK'. ( 7 )  
By using the similarity variable in (2), equations in  ( 7 )  can be reduced to the system 
O f  ODE, 

By the independent variable transformation (4), the system (7) yields the ODE 

It is not known whether the transformation (4) is related to any symmetry or invariance 
of the system or whether there are other ODE which may be obtained from (1) and  ( 7 ) .  

3. Singular point analysis and integrability 

3.1.Painlevi analysis 

There are no general methods available at  present to determine the integrability of a 
dynamical system. Nowadays, the Painlevi property ( PP) is widely being made use of 
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in identifying integrable cases. I f  the solution of a system of O D E  in the complex time 
plane does not have any movable singularities other than poles, i t  is said to possess 
the PP. Systems possessing the PP are believed to be integrable. For a system of ordinary 
differential equations (ODE) 

with i = I ,  2 , .  . . , n, n being the order of the system, to have the PP there must be a 
Laurent expansion for solutions of the form 

x, = r p ,  a,,r' 
, = o  

where I = t - to and r,, is the arbitrary pole position. In  the series, n - 1 expansion 
coefficients are arbitrary. Using the A R S  algorithm (Ablowitz, Ramani and  Segur 1980), 
we can test whether a system of ODE satisfies the necessary condition for possession 
of the PP. 

The notion of the PainlevC property originally introduced for ODE has, in recent 
times, been generalised to PDE as well. However, there exist several alternative 
approaches to this idea as applied to PDE. The early suggestion of ARS was to attribute 
the PP to a PDE when all the O D E  obtained by symmetry reduction have the PP. A more 
useful definition in terms of singular manifolds has been given by Weiss et a1 (1983). 
Ward (1984) has also proposed a generalised definition of the PP. In the WTC method 
the dependent variables are expanded as a generalised Laurent series about a singular 
manifold 4 = 0 of the form 

where u , ~  # 0, U,, = u,,(z,, z 2 ,  . . . , z , )  and 4 = qb(z,, z,, . . . , z,) are analytic functions 
of the indepenent variables z ,  , z 2 ,  . . . , z,, . Substituting equation (12) into the equation 
of motion we get recursion relations between U,,. The three steps of the algorithm are: 
( i )  find the dominant behaviour, (ii) find the resonances and  ( i i i )  find the arbitrary 
expansion coefficients. In the first step we substitute the j = 0 term of the series (12) 
into the system of equations and  calculate a ,  for which there is a balance of leading 
terms. For the PP, a, should be a negative integer. (For  the weak PP it can be a rational 
number as has been shown for ODE by Ramani et a1 (1982).) From this step we can 
find U,, also. 

To find resonances, j ,  which are the powers at which the coefficients of U,, of the 
term &+a in the expansion (12) is arbitrary, we substitute U,, = C $ " ( U , ~ +  U,,@) into the 
equations containing leading-order terms only. Then we extract the coefficient d( j )  = 
Q ( j ) u , ,  of the powers 4'+' ' -N,  where N is the order of the equation. Resonances are 
roots of the equation Q( j )  = 0. We always find -1 to be a root which corresponds to 
the arbitrariness of 4. To avoid any movable critical manifolds, we require that the 
remaining roots are non-negative integers. For O D E  it has been proved by Yoshida 
(1983) that if any of the Kowalevskaya exponents ( K E )  are imaginary or irrational, 
the system is algebraically non-integrable. The K E  obtained by Yoshida's singular 
point analysis (Yoshida 1983) have the same value as that of resonances under suitable 
conditions. The general connection between K E  and resonances has been discussed 
by Roekaerts and Schwarz (1987) and further by Joy and Sabir (1988). 
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In the third step we test whether positive resonances d o  indeed correspond to 
arbitrary constants in the solution (12) for the full equations of motion, without 
logarithmic singularities. This is done by expanding the solution (12) u p  to the largest 
value of the resonance. At each resonance we come across certain conditions on the 
preceding U,, and 4, known as 'compatibility conditions' which must be satisfied in 
order to ensure that the corresponding U,, is indeed arbitrary. If the system passes all 
the three steps we say that it is a P-case. (Note that here the possibility of movable 
essential singularities are not excluded.) This method has direct connections with 
Backlund transformations, Lax pairs, Lie symmetries, etc. The WTC method described 
here can also be applied to ODE. In  the case of ODE if we put q5 = t - t o ,  we have the 
usual ARS PainlevC test. 

In the case of the Y M  and  Y M H  systems we shall apply the WTC method to the PDE 

(1) and (7)  and also to the ODE obtained from them. 

3.2. Non-integrabilitity of Y M  and Y M H  systems 

We shall now apply the WTC method to the system (1) by trying to find solutions of 
the form 

To find the leading-order behaviour we put K = U,$". We can see that a = -1 and  
U :  = 2 r 2 ( 4 f  - 4:). The recursion relation is 

n=O , = O  

Resonances are found to be - 1 and  4. The resonance - 1 corresponds to the arbitrariness 
of 4. For the system to be integrable, at the resonance value 4 the expansion coefficient 
must be arbitrary. From the recursion relations up  to j = 4, we can see that u4 is not 
arbitrary. Therefore the system does not possess the PP. The conclusion is that 
spherically symmetric time-dependent Yang-Mills equations are non-integrable in the 
sense of WTC. To see whether it is integrable in the sense of ARS we shall d o  a PainlevC 
analysis of the ODE (3) and  ( 5 )  obtained from (1). Following the steps as mentioned 
above, we find that even though resonances are rational, a sufficient number of arbitrary 
expansion coefficients does not exist and hence these systems are also non-integrable. 

Next we consider the spherically symmetric time-dependent Yang-Mills-Higgs 
system (6). We seek solutions of the form 

From the leading-order analysis a = /3 = -1, 
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Recursion relations for U, and U, are 

r 2 [ ( j -  1 ) ( j - 2 ) ( 4 ; - 4 3 u 1  + ( j - 2 ) ~ , - , ( 4 ~ ~  - d f f )  

+ 2 ( j - 2 ) ( 4 4 4 - ,  , - 4 ~ - l  , I +  ~ , - L ~ ~ - ~ , - Z , ~ ~ I  

= u , ~ n ( u , ~ , u , - u n - , u , ) - u , - 2  

r 2 [ ( j -  1 ) ( j - 2 ) ( 4 : - - 4 3 ~ ,  + ( j - 2 ) ~ , - ~ ( 4 ~ ,  - d f l )  

n = o  r = O  

+ 2 ( j - 2 ) ( 4 ~ + ~ , ~ - -  4 1 u j - l , f ) +  ~ ~ - 2 , ~ ~ -  ~ ~ - 2 . ~ ~ 1  

= v / - n ( 2 u n - . u s - ~ u ~ - . v , ) - m  A 2 2  r 
n = O  s = O  g 

Resonances are found to be real if -$< ( A / g 2 )  S 2 .  But for the resonances to be 
integers A / g 2  = 0 or 1 .  When A / g 2  = 1, uo = 0 or U,, = 0 which is not allowed by the 
assumption that U" # 0, uo # 0. The resonance values for A/g2 = 0 are -1, 1, 2 and 4. 
Arbitrary expansion coefficients do not exist at the resonance values. Hence the system 
is non-integrable. When A / g 2  = 0 the leading-order terms of the system (6) are equal 
to its PS limit (7 ) .  It is also of non-PainlevC type, and hence non-integrable. The 
reduced systems (8) and (9) of the PS limit are also found to be non-integrable by the 
same analysis. 

It may also be mentioned that the ARS method is not suitable for equations (3) and 
(8) but can be applied to (5) and (9) after they are converted to corresponding 
autonomous systems. In these cases we find that the resonances, which also happen 
to be the K E ,  are irrational and hence these systems are also algebraically non-integrable 
in the sense of Yoshida (1983). 

4. Summary and conclusions 

In this work we showed that spherically symmetric time-dependent Yang-Mills 
equations as well as Yang-Mills-Higgs equations do not possess the PP in the sense 
of WTC and the ODE obtained from them are algebraically non-integrable. These 
conclusions are in general agreement with those obtained by Matinyan et a1 (1986, 1988) 
and by Furusawa (1987) for S U ( 2 )  Yang-Mills system. The noteworthy point is that 
we have been able to arrive at these results without introducing discretisation at any 
stage. 
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